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Ab initio and density functional theory methods (HF/3-21G*//HF/3-21G*, MP2/3-21G*//HF/3-21G*, B3LYP/3-21G*//HF/
3-21G*, B3LYP/LANL2DZ*//HF/LANL2DZ*, MP2/LANL2DZ*//HF/LANL2DZ* and HF/LANL2DZ*//HF/LANL2DZ*) used
to investigate the conformational properties of cyclohexane, 1,1-dimethylcyclohexane, 1,1-di-tert-butylcyclohexane,
1,1-bis(trimethylsilanyl)cyclohexane, 1,1-bis(trimethylgermanyl)cyclohexane and 1,1-bis(trimethylstannyl)cyclohex
ane showed that the energy difference between the chair and twist-boat conformations and also the ring flipping
energy barrier decreases from cyclohexane, 1,1-dimethylcyclohexane to 1,1-di-tert-butylcyclohexane, and increases
from 1,1-bis(trimethylsilanyl)cyclohexane, 1,1-bis(trimethylgermanyl)cyclohexane to 1,1-bis(trimethylstannyl)cyclo-

hexane.
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The conformational features of six-membered rings are
fundamental subjects in organic chemistry. Experimental
evidence indicating that six-membered rings are non-planar
began to accumulate in the 1920s. The most stable conforma-
tion of cyclohexane isthe chair. Electron diffraction studiesin
the gas phase revea a dlight flattening of the chair compared
with the geometry obtained when using tetrahedral molecular
models.! Two other non-chair conformations of cyclohexane
that have normal bond lengths are the twist and boat conforma-
tions.2 Both twist and boat conformations are less stable than
the chair. Molecular mechanics calculations indicated that
the twist conformation is about 5 kcal mol-1 and the boat
about 6 kcal moll higher in energy than the chair
conformation.3 A direct measurement of the chair-twist energy
difference has been made using low-temperature IR spectro-
scopy.* The enthal py and Gibbs-free energy of activation of the
interconversion of the chair form of cyclohexane derivativesis
about 11.0 kcal mol-1, as calculated by molecular mechanics®?
and dynamic NMR methods.8

Substitution of a hydrogen atom on the cyclohexane ring
with a bulkier group does not significantly affect the rate
of conformational inversion (ring inversion), but influences
the equilibrium between the alternative chair forms.?
All substituents that were axial in one chair conformation
become eguatorial on ring inversion, and vice versa and
the conformations in which there is a 1,3-diaxia or gauche
interaction between substituent groups larger than hydrogen
are destabilised by van der Waals repulsion.

Weiser et al. have examined systems containing a
cyclohexane ring with two substituted identical geminal
substituents such as. Me, Et, Bu or i-Pro groups.l® However,
they did not apply the MM3 method to calculate the barrier

height of the ring flipping of above mentioned compounds.
Neither did they investigate the effect of the increase of the
size of the bulky group on the energy gap between the chair
and twist-boat conformations of the geminally disubstituted
cyclohexane systems.

One may predict the change of the energy gaps
between the chair and twist-boat forms of compounds 3-6
(see Scheme 1) by the increase of M—Cyqonexy bONd lengths,
however, the bond lengths of M—CH; increase simultane-
ously and also probably the 1,3-diaxial repulsions. Therefore,
the influence of the M—CHs; groups on the energy gaps and
the barrier heights of the ring flipping of compounds 3-6
are not readily predictable. There is no reported quantitative
experimental or theoretical data about the energy gap between
chair and twist-boat formsor on barrier heights of ring flipping
of compounds 3-6. T herefore, one of the questions addressed
in this work was how the effect of the increase of the atomic
radius could affect the energy gap between chair and twist
boat forms, and also the barrier heights of ring flipping of
compounds 3-6.

As we were especialy interested to evaluate the impact of
the 1,3-diaxia repulsions on the energy gap between chair
and twist boat conformations in this family of compounds,
we performed ab initio molecular orbital (MO)1 and
density functional theory (DFT) calculations (B3LY P)1213 for
structural optimisations and energy calculations of the chair,
twist-boat and transition state structures of the ring flipping
of the following compounds: cyclohexane (1), 1,1-dimethyl-
cyclohexane (2), 1,1-di-butylcyclohexane (3), 1,1-bis
(trime-thylsilanyl)cyclohexane(4), 1,1-bis(trimethylgermanyl)
cyclohexane (5) and 1,1-bis(trimethylstannyl)cyclohexane (6)
(see Scheme 1).

R=H Q)
R=CHj 2
R=C(CHy; (3)
R=Ge(CHz)3 (5)
R=Sn(CHj3)3 (6)
(M =C, S, Ge, Su)

Scheme 1
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Fig. 1 Calculated energy diagram for ring inversion of compounds 1-6. (a) HF/3-21G*//HF/3-21G*; (b) MP2/3-21G*//HF/3-21G*;

(c) B3LYP/3-21G*//HF/3-21G*; (d) HF/LANL2DZ*//HF/LANL2DZ*;

LANL2DZ*

Recently, it has been argued that the B3LYP theoretical
model often overestimates conformational energy differences,
whereas MP2 appears to give values in better agreement
with experiment.1415 However, the results obtained in this
work contradict the above argument. Compared to MP2, the
caculated B3LYP results show smaller energy differences
between the chair and twist-boat conformationsfor compounds
1-6. Infact, the published literature B3LY P results showed the
increasing applicability of density functional theory (DFT) as
a successful computational method and now DFT methods
are known as reliable approaches for determining activation
barriers and molecular energies.1213.16.17

Calculations

Ab initio calculations were carried out using HF/3-21G*//
HF/3-21G*, MP2/3-21G*//HF/3-21G* and B3LYP/3-21G*//
HF/3-21G* levels of theory with the GAUSSIAN 98 package
of programs!! implemented on a Pentium—PC computer with
550 MHz processor. Since, according to the Gaussian 98
user’s reference 2nd edition, the 6-31G* basis set cannot be
applied to Sn compounds, for investigation of the stability of
the various conformations of compounds 1-6 (which contain
carbon, silicon, germanium and tin, respectively), we were
limited to using the HF/3-21G*//HF/3-21G*, MP2/3-21G*//
HF/3-21G* and B3LY P/3-21G*//HF/3-21G* methods. Basis
sets for atoms beyond the third row of the periodic table are
usualy handled somewhat differently. For these very large
nuclei, electrons near the nucleus aretreated in an approximate
way via effective core potentials (ECPs). This treatment
includes some relativistic effects, which are important in these

(e) MP2/LANL2DZ*//HF/LANL2DZ*; d) B3LYP/LANL2DZ*//HF/

atoms. For this purpose, the LANL2DZ basis set is known
to be one of the best of these basis sets.!! LANL2DZ is a
double-zeta basis set containing effective core potential (ECP)
representations of electrons near the nuclei for post-third row
atoms. Therefore, in addition to the HF/3-21G* method and
in order to compare the effect of all—electron with pseudo-
potential basis sets, B3LYP/LANL2DZ*//HF/LANL2DZ*,
MP2/LANL2DZ*/[HF/LANL2DZ* and HF/LANL2DZ*//
HF/LANL2DZ* methods were also used for the investigation
of the conformational properties of compound 6 (containing
Sn as a heavy atom). The MASSAGE keyword was a so used
in order to add additional uncontracted polarisation basis
function to the LANL2DZ basis set. Further, for evaluating
the relatively large basis set and post-HF method effects, we
used MP2/6-311G** level of theory for geometry optimisa-
tion of compounds 1 and 2.

Initial estimation of structural geometries of compounds
16 was obtained by a molecular mechanics program
PCMODEL (88.0)18 and for further optimisation of geometries
the PM3 method of MOPAC 7.0 computer program was
used.1920 The GAUSSIAN 98 program was finally used to
perform ab initio calculations at the HF/3-21G* level. Energy
minimum molecular geometries were located by minimising
energy with respect to al geometrical coordinates without
imposing any symmetrical constraints. The nature of the
stationary points for compounds 1-6 has been fixed by means
of the number of imaginary frequencies. For minimum state
structures, only real frequency values, and in the transition-
state, only single imaginary frequency value was accepted.?!
The structures of the molecular transition-state geometries
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Table 2 HF/3-21G* Calculated enthalpy, entropy and Gibbs—free energy in various conformations of compounds 1-6

Geometry H/hartree S /kcal mol-" K- G/hartree AH/hartree AS/kcal mol-1 K1 AG/hartree
1-(Chair), (Dsq) -232.277807 0.073456 -232.762708 0.000000 0.000000 0.000000
1-(Twist-boat), (C,) -232.717166 0.075149 -232.752872 0.010641 0.001693 0.009836
(6.677334) (6.172188)

1-[C—>TBI*, G -232.707584 0.075069 -232.743252 0.020223 0.001613 0.019456
(12.690135) (12.208835)

2—(Chair), (Cy) -310.305612 0.084427 -310.345727 0.000000 0.000000 0.000000
2—(Twist-boat), (C,) -310.296831 0.085503 -310.337456 0.008781 0.001076 0.008271
(5.510165) (5.190135)

2-[C—>TBJ, G, -310.286520 0.086134 -310.327445 0.019092 0.001707 0.018282
(11.980421) (11.472138)

3—-(Chair), (Cy) -542.969075 0.112411 -543.022485 0.000000 0.000000 0.000000
3—(Twist-boat), (C,) -542.968902 0.109971 -543.021153 0.000173 -0.002440 0.001332
(0.108559) (0.835843)

3-[C>TB,C, -542.963863 0.112874 -543.017493 0.005212 0.000463 0.004992
(3.270582) (3.132530)

4—(Chair), (Cy) -1042.798792 0.136232 -1042.863520 0.000000 0.000000 0.000000
4—(Twist-boat), (C,) -1042.792613 0.138319 -1042.858332 0.006179 0.002087 0.005188
(3.877384) (3.255521)

4-[C—>TBJ, G, -1042.786320 0.137215 -1042.851515 0.012472 0.000983 0.012005
(7.826305) (7.533258)

5—(Chair), (Cs) -4598.854327 0.146245 —-4598.923812 0.000000 0.000000 0.000000
5—(Twist-boat), (C,) -4598.846167 0.150588 -4598.917716 0.008160 0.004343 0.006096
(5.120482) (3.825301)

5-[C—>TBJ¥, C; -4598.836284 0.149099 -4598.907125 0.018043 0.002854 0.016687
(11.322163) (10.471259)

6—-(Chair), (Cy) -12461.285463 0.164571 -12461.363656 0.000000 0.000000 0.000000
6—(Twist-boat), (C,) -12461.275237 0.166759 -12461.354470 0.010230 0.002188 0.009180
(6.419427) (5.760542)

6-[C—>TBI*, C; -12461.263516 0.168242 -12461.343454 0.021950 0.003671 0.020200
(13.773845) (12.675702)

Numbers in parenthesis are the corresponding AE values in kcal mol-1.
For transition state structures the AH, AS and AG values are the corresponding AH#, AS# and AG* values.

werelocated using the optimised geometries of the equilibrium
molecular structures according to the Dewar et al. procedure
(keyword SADDLE).Z2 These geometry structures were
reoptimized by the QST2 subroutine at the HF/3-21G* level.
The vibrational frequencies of ground states and transition
states were calculated by FREQ subroutine.

The thermodynamic functions (all corrected for the zero-
point energy), i.e. E, enthalpy H (sum of the electronic
and the thermal enthalpy), Gibbs free energy G (sum of
the electronic and thermal free energy) and entropy S, were
calculated according to the following relation: E = Ey + Ep,
+ Ejot + Eyans H = E+ RT, G = H — TS as defined in the
output of the frequency calculation in GAUSSIAN 98 manual.
Finaly, using the corresponding calculated thermodynamic
data for ground and transition states, AG#, AH# and AS* were
also determined.

Results and discussion

Zero point (ZPE) and total electronic (Ey) energies (E.=Eq +
ZPE) for various conformations of compounds 1-6, as calculated
by the ab initio HF/3-21G* level of theory are given in Table 1.
For single-point energy calculations, both the ab initio MP2/3-21G*//
HF/3-21G* and the DFT methods (B3LYP/3-21G*//HF/3-21G*)
were used. Also Table 2 shows the values of the thermodynamic
functions H, S G and the activation parameters (AG*,AS* andAH*).
AS vaues are relatively small, so that the AH# and AG* values are
close to theAE, values. Also, HF/LANL2DZ* was used to calculate
the zero-point (ZPE) and total electronic energies of compound 6,
and MP2/LANL2DZ*//HF/LANL2DZ* and B3LYP/LANL2DZ*//
HF/LANL2DZ* levels of theory were, as well, used for single-point
energy calculations. Both the structural and energetic parameters for
compound 6 (containing Sn as a heavy atom) obtained by pseudo-
potential B3LYP/LANL2DZ*//HF/LANL2DZ*, MP2/LANL2DZ*//

HF/LANL2DZ* and HF/LANL2DZ*//HF/ILANL2DZ* methods
were also used for comparison with those obtained by all—€lectron
HF/3-21G*//HF/3-21G*, MP2/3-21G*//[HF/3-21G* and B3LYP/3-
21G*//HF/3-21G* methods.

The results obtained by the HF/3-21G*//HF/3-21G*, MP2/3-
21G*//HF/3-21G* and B3LY P/3-21G*//HF/3-21G* levels of theory
revealed that the most stable conformation of each of the compounds
1-6 is the chair form. In cyclohexane (1), the energy difference
between the chair and the twist-boat conformation is 6.5, 6.45 and
6.25 kca moll, respectively, as calculated by HF/3-21G*//HF/3-
21G*, MP2/3-21G*//[HF/3-21G* and B3LY P/3-21G*//HF/3-21G*
methods. Compared to the results obtained for compound 1, all three
methods show that the energy difference between the chair and twist-
boat conformation of compound 2 is reduced. In compound 2, the
twist-boat conformation is less stable than the chair conformation
by about 5.42, 5.40 and 5.08 kcal mol-1, respectively, as calculated
by mentioned above methods (see Table 1). In compound 3, the
calculated energy difference between chair and twist-boat conforma-
tions by HF/3-21G*//HF/3-21G*, MP2/3-21G*//HF/3-21G* and
B3LY P/3-21G*//HF/3-21G* methods is 0.46, 0.61 and 0.65 kcal
mol- respectively. The reason for the relative instability of the chair
conformation of compound 3 (compared to compounds 1-2) could be
explained by the stronger 1,3-diaxial and gauche repulsions between
the large t-butyl groups and the axial hydrogens of the C3 and C5
carbon atoms of the cyclohexane ring. In the twist-boat conformation
of compound 3, 1,3-diaxial and gauche repulsions are decreased and
consequently both chair and twist-boat conformations are expected to
be significantly populated at room temperature, while in compounds
1 and 2, only the chair conformation is expected to be populated.
HF, MP2 and B3LY P results show that by increasing the C-M bond
lengths (M=Si, Ge and Sn), the energy differences between the chair
and twist-boat conformationsincrease (see Table 1). B3LY P/3-21G*//
HF/3-21G* results show that the chair conformation of compounds
3-6 is about 3.51, 5.05 and 6.45 kcal mol-l, respectively, more
stable than the twist-boat conformation. These results are in good
agreement with the results obtained by HF/3-21G*//HF/3-21G*
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Table 6 Calculated HF/3-21G*, MP2/6-311+G** and experimental structural data for the chair conformation of compound 1 and
calculated HF/3-21G*, MP2/6-311+G** and MP2/6-311G** data for the chair conformation of compound 2. Bond lengths are in

angstrom (A) unit and angles in degrees (°).

1-C, Dyy 2-C, C,

HF/3-21G* MP2/6-311+G**.2 Exp.P HF/3-21G* MP2/6-311+G**2a MP2/6-311G**.c
Bond lengths (A)
ris 1.541 1.532 1.528 1.546 1.539 1.538
3 1.541 1.532 1.528 1.541 1.532 1.5631
ray 1.541 1.632 1.528 1.540 1.631 1.530
rys 1.541 1.532 1.528 1.540 1.531 1.530
rse 1.541 1.632 1.528 1.541 1.632 1.531
re 1.541 1.532 1.528 1.546 1.539 1.538
riy 1.087 1.099 1.119 1.542 1.634 1.5633
rig 1.085 1.096 1.119 1.542 1.531 1.530
Bond angles (°)
0103 110.8 1111 111.1 113.3 113.5 113.6
0234 110.8 111.1 1111 110.6 110.8 109.5
03 45 110.8 111.1 1111 110.6 110.9 111.2
0456 110.8 111.1 1111 110.6 110.8 109.5
O5.6-1 110.8 111.1 1111 113.3 113.5 113.6
0612 110.8 111.1 1111 109.3 109.1 109.0
0_1_7 109.1 109.1 - 110.8 110.6 110.6
0618 110.2 110.3 - 108.9 109.1 109.1
07_1-g 107.5 107.0 - 110.8 108.3 108.4
Torsion angles (°)
0 1234 -56.7 -55.9 -55.9 -56.0 -55.6 -
02345 56.7 55.9 55.9 56.7 55.8 55.2
034556 -56.7 -55.9 -55.9 -56.7 -55.8 -55.2
04561 56.7 55.9 55.9 56.0 55.6 -
0 5.6-1-2 -56.7 -55.9 -55.9 -53.1 -53.1 -53.1
0 §-1-2-3 56.7 55.9 55.9 53.1 53.1 53.1
0 g1-0.3 178.7 178.5 - 171.9 172.2 -
0 g_1-6-5 -178.0 -178.5 - -171.9 -172.2 -
0 7-1-2-3 -63.5 -64.4 - -69.4 -68.8 -
0 7_1-6-5 63.5 64.4 - 69.4 68.8 -
aThis work.
bSee ref. 1.
cSee ref. 15.

and MP2/3-21G*//HF/3-21G* methods. Consequently, contrary to
the compound 3, but similar to cyclohexane (1) and 1,1-dimethyl-
cyclohexane (2), only the chair conformations of compounds 4-6 are
expected to be significantly populated at room temperature.

Compared to the all-electron methods used in this work, the results
obtained by pseudopotential B3LY P/ILANL2DZ*//[HF/ILANL2DZ*,
MP2/LANL2DZ*//HF/LANL2DZ* and HF/LANL2DZ*//HF/
LANL2DZ* methods showed only a small underestimation for the
gap and barrier energies between chair and twist- boat conformations
(see Tables 1 and 3).

Representative structural parameters for various conformations of
compounds 1-6, as calculated by the HF/3-21G* level of theory, are
given in Table 4. In comparison to compounds 1, 2, 4, 5 and 6, the
chair conformation of compound 3, is disfavoured by 1,3-diaxial and
gauche repulsions, in which the destabilisation is associated with the
interaction between the hydrogen atoms on C3 and C5 carbon atoms
of the cyclohexane ring and the large t-butyl groups. It has to be
noted that for compound 6, apart from alower C—Sn bond length, the
structural parameters obtained by the HF/LANL2DZ* level of theory
do not show any significant differences compared to those obtained
by HF/3-21G* methods (see Table 5).

Comparison of the calculated structural parameters by the HF/3-
21G* level of theory for compounds 1 and 2 with the only available
reported data (experimental data for compound 1! and theoretical
data for compound 215 show only fairly small differences (see
Table 6). Also, for compounds 1, 2, the results show that there are no
major differences between the cal culated geometric parameters using
the MP2/6-311+G** or HF/3-21G* levels of theory (see Table 6).
Theoretical calculations provide structural parameters for isolated
molecule at 0 K. Therefore, theoretical calculations are not reported,
in principal, to reproduce the experimental values quantitatively.2
Nevertheless, it is possible to carry out ab initio calculations, for

instance at the Hartree-Fock level, from which many properties and
structure can be obtained with an accuracy that is competitive with
experiments.24-27

Studies on the HF/3-21G* method show that the cyclohexane
rings in compounds 3-5 are not of plane symmetrical form, but are
in twisted conformations. For example, the dihedral angles between
planes C6-C1-C2 and C1-C2-C3 for compounds 3-5 are 45.2°,
54.3° and 48.3°, respectively (see Table 4).

The energy surface for interconversion of the minimum energy
conformation of compounds 1-6 was investigated in detail by the
change in 01,3, and 654 torsion angles, as illustrated in Fig. 1. The
ring inversion of the chair conformation takes place via the twist-boat
(C, symmetry) conformation (see Fig. 1). The boat form is not shown
in the diagram because the chair forms can interconvert without
passing through the boat conformation. In compound 3, the ring
flipping process is fast and, therefore, the time-averaged symmetry
of 3 becomes C,,, which is the maximum symmetry allowed by the
chemical structure of this molecule.

The calculated energy barriers for ring flipping of compounds
1-6 are given in Tables 1 and 2. The results show that the energy
barrier for compound 3 is significantly decreased in comparison to
that of the cyclohexane (1). As previously reported,? the rate of ring
flipping of cyclohexane (1) and its mono-substituted derivatives is
independent to the type and size of the substitution groups. However,
in the present study, the HF/3-21G*//HF/3-21G*, HF/LANL2DZ*//
HF/LANL2DZ*, MP2/3-21G*//HF/3-21G*, MP2/LANL2DZ*//HF/
LANL2DZ*, B3LY P/3-21G*//HF/3-21G* and B3LYP/LANL2DZ*//
HF/LANL2DZ* resultsreveal ed that the rate of ring flipping increases
by increasing the steric hindrance of the geminal substituted groups
(Fig.1), contrary to the well known mono-substituted derivatives of
cyclohexane reported in the literature.®



Conclusion

The reported ab initio and density functional theory calculations
provided a picture from both structural and energetic point of view
for compounds 1-6. The caculated results by HF/3-21G*//HF/3-
21G*, MP2/3-21G*//[HF/3-21G* and B3LYP/3-21G*//HF/3-21G*
levels of theory show that for compounds 1, 2, 4, 5 and 6, only the
chair conformation is expected to be significantly populated at room
temperature, whereas in compound 3, both the chair and twist-boat
conformations are expected to be populated at this temperature. The
conformational properties of compound 6 (containing Sn as a heavy
atom) were also investigated using all—€lectron with pseudopotential
basis sets B3LY PILANL2DZ* //[HF/LANL2DZ*, MP2/LANL2DZ*//
HF/LANL2DZ* and HF/LANL2DZ*//HF/LANL2DZ* methods. The
results obtained showed only a small underestimation for the gap and
barrier energies between the chair the and twist-boat conformations,
compared to the above all-electron basis-set (3-21G*). In compounds
1, 2, 4, 5 and 6, the twist-boat conformations are the relatively
high-energy intermediates on the ring inversion energy profiles.
Also, studies at the HF/3-21G*//HF/3-21G*, MP2/3-21G*//HF/3-
21G* and B3LYP/3-21G*//HF/3-21G* levels of theory indicate that
the ring flipping energy barrier of compound 3, in comparision to
cyclohexane (1), is relatively reduced. Further, for compounds 1 and
2, the results show also that there is no major differences between
the calculated geometric parameters using the MP2/6-311+G** or
HF/3-21G* levels of theory. It would be valuable, of course, to have
direct structural and dynamic experimental data on compounds 2—6
for comparison with the results of ab initio calculations.
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